Time-lapsed images show how magnesium ions coordinate double-stranded breaks in CRISPR-Cas9

  • 📰 NewsMedical
  • ⏱ Reading Time:
  • 30 sec. here
  • 2 min. at publisher
  • 📊 Quality Score:
  • News: 15%
  • Publisher: 71%

Technology Technology Headlines News

Technology Technology Latest News,Technology Technology Headlines

The gene-editing technology known as CRISPR has led to revolutionary changes in agriculture, health research and more.

In research published in Nature Catalysis, scientists at Florida State University produced the first high-resolution, time-lapsed images showing magnesium ions interacting with the CRISPR-Cas9 enzyme while it cut strands of DNA, providing clear evidence that magnesium plays a role in both chemical bond breakage and near-simultaneous DNA cutting.

CRISPR-Cas9 is the most widely used tool for genetic manipulation. The technology uses a repurposed enzyme to bind to DNA, allowing alterations at specified locations in a genome. The researchers used the cryo-electron microscope at FSU's Biological Science Imaging Resource, which can produce images with near-atomic resolution, to observe metal ions and other atoms at work within the CRISPR-Cas9 enzyme. That allowed them to collect data that not only confirmed their earlier hypotheses but also led to the surprising discovery about how magnesium coordinates double-stranded breaks.

 

Thank you for your comment. Your comment will be published after being reviewed.
Please try again later.
We have summarized this news so that you can read it quickly. If you are interested in the news, you can read the full text here. Read more:

 /  🏆 19. in TECHNOLOGY

Technology Technology Latest News, Technology Technology Headlines